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ABSTRACT 
Multimodal dialogue systems (MDS) have recently attracted increas-
ing attention. The automatic evaluation of user impression with 
spoken dialog at the dialog level plays a central role in managing 
dialog systems. A user usually forms an overall impression through 
the experience of each exchange of turns in the conversation. Thus, 
the user’s exchange-level sentiment should be considered when 
recognizing the user’s overall impression of the dialog. Previous re-
search has focused on modeling user impressions during individual 
exchanges or during the overall conversation. Thus, the relationship 
between user sentiment at the exchange level and user impression 
at the dialog level is still unclear, and appropriately utilizing this 
relationship in impression analysis remains unexplored. In this 
paper, we frst investigate the relation between sentiment at the 
exchange level and 18 labels that indicate diferent aspects of the 
user impression at the dialog level. Then, we present a multitask 
learning model (MTL) that uses exchange-level annotations to rec-
ognize dialog-level labels. The experimental results demonstrate 
that our proposed model achieves better performance at the dialog 
level, outperforming the single-task model by a maximum of 15.7%. 
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1 INTRODUCTION 
With the development of natural language processing (NLP) and 
speech recognition, dialog systems such as speech assistant sys-
tems, information guide systems in public locations, and intelligent 
customer service systems have begun to play crucial roles in our 
lives. An important step in improving the quality of dialog systems 
is to evaluate the user’s impression of the system. Many previous 
studies have used objective evaluation metrics to assess dialog sys-
tems. Previous research on user impressions can be divided into 
two categories: dialog-level and exchange-level user impression 
modeling. Exchange-level methods are designed to evaluate the 
user’s impression at any point in a particular conversation. The 
main purpose of exchange-level user impression evaluations is to 
track the user’s internal impressions (such as their sentiment) and 
to adapt verbal and nonverbal responses according to the user im-
pression. A good dialog system should be not only coherent and 
appropriate but also engaging [26]. The user’s overall impression 
of the conversation system is also infuenced by the experience of 
each exchange, and the user’s self-sentiment at the exchange level 
may be helpful for determining the user’s overall evaluation of the 
dialog. 

Previous studies [11, 12, 21] have recognized user interactions at 
the dialog and exchange levels separately, and few studies [5] have 
explored and utilized the relationship between the two. Bodigutla 
et al. [5] used multiple tasks to recognize turn- and dialog-level 
impression ratings for a given task-oriented dialog proving that 
dialog-level labels are benefcial for evaluating user satisfaction 
at the exchange level. However, this study focused on modeling 
user satisfaction in text-to-text dialog systems rather than multi-
modal systems and did not explore the relationship between the 
dialog and exchange levels, which remains unclear. In particular, 
the type of user knowledge that is shared between dialog-level and 
exchange-level sentiment is important in developing multimodal 
dialog systems. 

Based on this background, we use a publicly available multimodal 
dialog dataset that contains multimodal data [16], including audio, 
body, visual, and transcript data, as well as two types of user senti-
ment labels to evaluate user impressions of the system. The dataset 
was collected with a non-task-oriented dialogue system with the 
annotations of dialogue level and exchange level sentiments. There-
fore, this dataset allows us to investigate the relationship between 
the dialogue level and exchange level. Based on the fndings of the 
correlation analysis between the two types of labels, we present 
a multitask model for recognizing dialog-level annotations that 
includes two tasks: recognizing the self-sentiment at the exchange 
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level and recognizing the dialog-level label. To validate the efective-
ness of the proposed multitask model, we compare the dialog-level 
labels of the single-task and multitask models. The comparative 
analysis in Section 6.2 indicates that considering user sentiment at 
the exchange level was helpful for recognizing the user impression 
at the dialog level. Furthermore, we compared the results of our 
proposed model with those of other works using the same database. 
We demonstrate that our multitask model achieved better perfor-
mance in Section 7.2. The main contributions of this study can be 
summarized as follows: 
Exploration of the relation between exchange-level labels 
and dialog-level labels: To explore the relationship between the 
exchange level and the dialog level, we use a dataset and annotate 
the user impressions at the exchange and dialog levels. We frst 
analyze the relationship between user sentiment at the exchange 
and dialog levels in Section 3.3. Then, we investigate the efect of 
the correlation coefcient on the multitask performance in Section 
7.2. The comparative analysis demonstrates that the correlation 
generally has a positive efect on the multitask performance. 
Sequential multitask learning (MTL) of both exchange-level 
and dialog-level labels: Sequential MTL [1] enables the model to 
utilize information from various tasks to learn important common 
information between diferent tasks. This characteristic allows MTL 
to train the model to handle one task while accounting for other 
sub-tasks. However, multiple labels are assigned to the same dimen-
sional data input in basic MTL. Thus, we need to handle multiple 
labels that are assigned to diferent units (exchange and dialog) in 
this study. To train the model using labels assigned to diferent units, 
we utilize the sequence modeling method. We use long short-term 
memory (LSTM) and gated recurrent units (GRUs) as baselines. We 
show the impact of MTL in Section 6.2, and the results show that 
the MTL strategy improved the recognition accuracy on almost all 
dialog-level tasks. 

2 RELATED WORKS 
With the development of social signal processing, human-computer 
interaction applications are increasingly used in people’s daily lives. 
According to whether the dialog has a goal, the dialog system can be 
roughly divided into two categories: task-oriented dialog systems 
and open-domain non-task-oriented dialog systems. Task-oriented 
systems assist users in solving specifc tasks as efciently as pos-
sible [24]. In contrast, non-task-oriented systems do not have a 
specifc task, and their main purpose is to entertain users with 
open-domain chats [14]. Non-task-oriented systems are used in 
many felds, such as assisting elderly people and those learning a 
second language. In a non-task-oriented dialog system, it is more 
important to engage the user in the interaction as long as possible 
and to ensure that the users returns as often as possible rather than 
to respond to the user correctly. Previous studies have shown that 
people spontaneously adjust their facial expressions, postures, pro-
nunciation, and speech rates during conversation [6, 17, 18], which 
demonstrates that dialog should be able to capture the unspoken 
intentions, attitudes, and emotions of interlocutors, especially in 
non-task-oriented dialog systems. [25] proposed a multimodal non-
task-oriented dialogue system that improved user experience by 
assessing the multimodal behavior of users. 

The evaluation of the performance of a dialog system is one 
crucial component of managing dialog. Non-task-oriented dialog 
systems, such as an open-domain dialog systems, cannot set clear 
goals for the dialog; thus, it is more difcult to evaluate task accom-
plishments than in task-oriented dialog systems. To address this 
issue, recent research has focused on recognizing user-centered 
criteria, such as satisfaction and interaction quality annotated by 
users [22, 23]. In recent decades, many researchers have focused 
on evaluating user status. Most can be divided into two categories: 
exchange-level evaluations and dialog-level evaluations. 

For exchange-level evaluation tasks, as the user’s impressions 
can change dynamically during dialog exchanges, it is necessary 
to capture these dynamic changes in real time so that the system’s 
next action adopts a dialog strategy based on the user’s impressions. 
Schmitt and Hara et al. [11, 21] used support vector machines and 
n-grams to predict the quality of interactions in ongoing dialogs 
at the exchange level. Engelbrecht et al. [9] used hidden Markov 
models (HMMs), and the user’s opinion was regarded as a contin-
uously evolving process. Historical context plays a crucial role in 
conversations and is benefcial for recognizing user satisfaction and 
considering temporal features at diferent levels. To overcome the 
limitation of handcrafting temporal features, Ultes et al. [22] devel-
oped a recurrent neural network for recognition user satisfaction. 
To evaluate diferent aspects of the user’s impressions, Hirano et 
al. [13] proposed a multitask deep learning neural network model 
that used multimodal features and deep neural networks (DNNs) to 
recognize the three exchange-level features: (1) the user’s interest 
label, (2) the user’s sentiment label, and (3) the topic continuance 
label toward the spoken dialog system. 

The main purpose of the dialog level evaluation task is to learn 
dialog strategies to maximize the overall impression of the dia-
log, which is also helpful for identifying problematic conversa-
tion topics that led to user dissatisfaction. Higashinaka et al. [12] 
used overall dialog ratings to estimate dialog-level quality by us-
ing HMM and overcame the limitation by using task success [20] 
as dialog evaluation criteria. To estimate user satisfaction in con-
versations that span multiple domains, Bodigutla et al. [4] used 
new domain-independent feature sets (the aggregate topic popu-
larity and the diversity of topics in a session) to estimate the user 
satisfaction at both the turn and dialog levels. Wei et al. [23] pro-
posed a multimodal user satisfaction recognition model to evaluate 
non-task-oriented dialog systems at the dialog level by using au-
tomatic multimodal features. Furthermore, they investigated the 
contribution of diferent modalities to user satisfaction at the dialog 
level. 

All the above works recognized user impression on dialog and 
exchange levels separately. To utilize the relationship between the 
two, this study proposes a multimodal model for recognizing the 
dialog level user impressions by considering the user’s sentiment at 
the exchange level that is suitable for evaluating non-task-oriented 
dialog systems. We frst explore the relationship between 18 dialog 
labels and the user’s sentiment at the exchange level and then utilize 
MTL models, which enable the model to recognize self-sentiment 
while considering the user’s overall impression at the dialog level. 
Fig. 1 shows an overview of this research. 
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Figure 1: Overview of the MTL multimodal model for recognizing user impressions. 

Figure 2: The rate distribution of the exchange-level annota-
tions. 

3 DATA DESCRIPTION 

3.1 Data 
Following [16, 23], the Hazumi1902 and Hazumi1911 data corpora 
were employed in this research. These two corpora include 60 
participants (25 males/35 females aged 20-60 years). To reduce the 
efect of participants having diferent preferences on various topics, 
The behavior of the participants was recorded with a video camera 
and Microsoft Kinect V2 sensor. 

3.2 Annotations 
3.2.1 Dialog level annotations. The dataset used a questionnaire 
with 18 labels relating to the user’s impression of the dialog, as 
proposed in [3]. The questionnaire measured cognition and rap-
port in interpersonal communication. The 18 items were “well-
coordinated”, “boring”, “cooperative”, “harmonious”, “unsatisfy-
ing”, “uncomfortably paced”, “cold”, “awkward”, “engrossing”, “unfo-
cused”, “involving”, “intense”, “friendly”, “active”, “positive”, “dull”, 

“worthwhile”, and “slow”. Each label was evaluated on an eight-
point scale from 1 to 8 by the users after the dialogue. 

3.2.2 Exchange level annotations. In this section, we describe the 
diferent exchange-level labels in detail. 
External sentiment: In this work, an exchange was defned as the 
part that begins at the start time of a system utterance and ends at 
the start time of the next system utterance. Human coders annotated 
the external sentiment according to the participant performance 
during each exchange with a score ranging from 1 (participant 
seems bored with the dialog) to 7 (participants seem to enjoy the 
dialog), and fve experts annotated the external sentiment labels. 
The distribution of the self-sentiment and external sentiment (av-
erage score annotated by the fve experts) on the exchange-level 
labels are shown in Fig. 2. 
Self-sentiment: This annotation was similar to the external sen-
timent annotation. Self-sentiment labels were assigned as scores 
ranging from 1 (want to stop talking, confused about the systems 
utterances) to 7 (enjoy talking, satisfed with the talk) and were 
annotated by the participants themselves. 

3.3 Data analysis 
In this study, we focus on exploring the relationship between the 
overall exchange sentiment within a dialog and the dialog-level 
sentiment. This relationship can refect whether certain exchange 
sentiments lead to certain dialog sentiments from the viewpoint of 
the whole dialog. We computed the Pearson correlation coefcients 
between the average exchange labels (values) over the time-series 
exchanges and the dialog labels of all dialogues and investigated 
the distribution of the coefcient values. 

Moreover, as seen from the above defnitions of dialog-level 
labels, the dialog-level labels describe the user impression with 
both positive and negative annotations. Since diferent polarity 
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Table 1: Pearson correlation coefcient and P-value (p) results 
between exchange-level sentiments and dialogue-level sen-
timents. (a) shows the coefcients between exchange-level 
sentiments and positive dialogue-level annotation; (b) shows 
the Pearson correlation coefcients between exchange-level 
sentiments and negative dialogue-level sentiments. (** rep-
resents � < 0.001, * represents 0.001 < � < 0.05; if � > 0.05, no 
symbol is shown.) 

(a) Pearson correlation coefcients of positive dialogue-level annotations 
Third-party sentiment Self-sentiment 

Well-coordinated +0.222 +0.297 * 
Cooperative -0.002 +0.110 
Harmonious +0.058 +0.309 * 
Engrossing +0.179 +0.359 * 
Involving +0.154 +0.298 * 
Friendly +0.042 +0.283 * 
Active +0.068 +0.253 * 
Positive +0.154 +0.245 
Worthwhile +0.037 +0.531 ** 
Average +0.101 +0.299 
(b) Pearson correlation coefcients of negative dialogue-level annotations 

third-party sentiment Self-sentiment 
Boring -0.135 -0.448 ** 
Unsatisfying -0.123 -0.289 * 
Uncomfortably paced +0.049 -0.279 * 
Cold -0.270 * -0.528 ** 
Awkward -0.156 -0.362 * 
Unfocused -0.215 -0.261 * 
Intense -0.237 -0.164 
Dull -0.263 -0.453 ** 
Slow -0.190 * -0.386 * 
Average -0.171 -0.352 

labels describe opposing annotations, we divide the dialog-level 
labels into two categories to precisely investigate the diferent 
annotation polarities. The positive category includes the labels 
well-coordinated, cooperative, harmonious, engrossing, involving, 
friendly, active, positive, and worthwhile. The negative category 
includes the labels boring, unsatisfying, uncomfortably paced, cold, 
awkward, unfocused, intense, dull, and slow. 

Table 1 (a) lists the coefcient value between exchange-level 
sentiments and positive dialog-level annotations, and Table 1 (b) 
lists the coefcient value between exchange-level sentiments and 
negative dialog-level annotations. Each row indicates a dialog-level 
annotation, and each column indicates an exchange-level sentiment. 
The intersection between a row and a column represents the coef-
fcient value between an overall exchange-level sentiment and a 
dialog-level annotation. The average shows the average coefcient 
value of the coefcients of a given polarity corresponding to a given 
exchange-level sentiment. 

As seen in the table, all coefcients between the exchange-level 
sentiment and the positive dialog-level annotations are positive, 
except the coefcient between the third-party sentiment and the 
cooperative label, which is negative but close to zero. The aver-
age coefcient between the third-party sentiment and the positive 
dialog-level annotations is 0.101. The average coefcient between 
the self-sentiment and the positive dialog-level annotations is 0.299. 
On the other hand, all coefcients between the exchange-level 

Figure 3: The Pearson correlation coefcient between each 
segment and dialog-level label (worthwhile and cold). 

sentiment and the negative dialog-level annotations are negative. 
The average coefcient between the third-party sentiment and the 
negative dialog-level annotations is -0.171. The average coefcient 
between the self-sentiment and the negative dialog-level annota-
tions is -0.352. These results demonstrate that dialog-level anno-
tations are closely related to exchange-level sentiments. A higher 
overall exchange-level sentiment leads to a positive dialog-level 
annotation, while a lower overall exchange-level sentiment leads 
to a negative dialog-level annotation. Almost all exchange-level 
self-sentiment and dialog-level annotation pairs have a signifcant 
correlation, with p<0.05; however, most third-party sentiment pairs 
are not signifcant (p>0.05). This result indicates that exchange-
level self-sentiment labels correlate more and have more common 
information with dialog-level labels. Moreover, compared with the 
self-sentiment label annotated by the user themselves, the external 
sentiment annotated by the fve experts was more time-consuming 
and expensive. Thus, our study used the self-sentiment as a sub-task 
target label. 

Table 1 shows that the “worthwhile” label obtained the highest 
correlation with the self-sentiment among all positive annotations, 
while the “cold” label had the highest correlation with the self-
sentiment label among all negative annotations. To explore the 
correlation between diferent conversation segments and dialog-
level annotations, we divided the dialog into 10 segments and used 
Pearson correlations to compute the average coefcient value of 
each segment. Fig. 3 shows the correlation coefcient of the cold 
and worthwhile labels for each segment and the overall conver-
sation with the self-sentiment label. We observed that diferent 
segments had distinct relations at the dialog label, and few seg-
ments (worthwhile-10th) had higher correlations at the dialog level. 
Compared with the correlation between the average value of each 
conversation segment and the self-sentiment, the average value of 
the overall dialog had a higher correlation with dialog-level anno-
tations, which indicated that considering all exchanges is better 
for recognizing the dialog label. For this reason, all exchange-level 
information was utilized in all experiments. 

We confrm that the dialog-level annotations are closely cor-
related with the exchange-level self-sentiment and suggest that 
considering the exchange-level sentiment can improve dialog-level 
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annotation recognition. For this reason, in this study, we recog-
nize user impressions by considering user self-sentiment at the 
exchange level. 

4 METHODS 

4.1 Feature extraction 
4.1.1 Audio features. For the acoustic modality, we use the speech 
feature extractor OpenSMILE [10] to extract acoustic features at the 
exchange level. The acoustic features correspond to the extended 
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), which 
achieves high performance in emotion-related felds. The features of 
each speaker are extracted and normalized. Because these acoustic 
features represent the performance of an entire exchange, we apply 
the same acoustic features to utterances that have diferent labels 
in one exchange. 

4.1.2 Linguistic features. For the linguistic modality, we extracted 
two types of linguistic features from transcriptions of spoken dialog 
contents. 
Part of speech: The sentences were segmented into words and 
annotated with universal part-of-speech (POS) tags by using Stanza 
NLP 1. The number of diferent POS tags for each sentence are 
counted. We use a 17-dimensional vector as a sparse representation 
of 17 POS tags. 
Bidirectional Encoder Representations from Transformers 
(BERT) [8]: Language model pretraining has been proven to be 
useful for learning universal language representations. A model 
pretrained on Japanese text (using Wikipedia) [15] was employed 
in this work. We use this model to extract features from text at 
the exchange level, yielding a 768-dimensional text representation 
vector. Thus, we obtain a 785-dimensional linguistic feature vector. 

4.1.3 Body features. For body features, this work uses three-dimensional 
coordinates of each joint in the upper body, which were estimated 
with a Microsoft Kinect v2 sensor. Five points of body motion are 
employed: the left shoulder, right shoulder, left hand, right hand, 
and head. We denote the three-dimensional coordinate of each body 
point in frame � as � (�) = �,�, � and the time between frames as 
�1. We calculate the absolute value of the velocity between two 
frames as |� (�) | = |� (� + 1) − � (�) | and the absolute value of the 
acceleration between two frames as |�(�) | = |� (�) − � (� − 1) |. We 
calculate the velocity and acceleration to coordinate the data of 
the 5 body points in all frames. After � (�) and �(�) are calculated, 
we use the maximum value of the acceleration and the maximum, 
mean, and standard deviation of the velocity in each exchange turn 
as body activity features. Thus, the body activity feature set has a 
total of 20 dimensions. 

4.1.4 Visual features. For extracting visual features, we used Open-
Face [2] software. 
Facial landmark features: OpenFace outputs three-dimensional 
coordinates of 68 facial landmarks in each frame. In this study, ten 
facial landmarks were selected: two on each eye, four on the mouth, 
and two on the eyebrow. We adopted the same method as used 
for tracking body features. The maximum acceleration value and 
the maximum, mean, and standard deviation of the velocity were 

1https://github.com/stanfordnlp/stanza 

Figure 4: The structures of the signal task model and multi-
task model. 

extracted for each user exchange and used as visual features. Thus, 
we obtained a 40-dimensional vector. 
Action units:Facial expressions display emotional states that ob-
jectively describe facial muscle activation [7]. To extract the facial 
expression, this study used OpenFace software to obtain 18 action 
units (AUs) that were rated between 0 and 1, which indicate ab-
sence and presence, respectively. Then, we calculated the average 
of each AU during the exchange to obtain the facial AU features 
(18-dimensional). Overall, 58 dimensions of visual features were 
used in this study. 

4.2 Model 
4.2.1 Single task deep learning neural network (baseline). User mul-
timodal behavior dynamically changes during a conversation. To 
preserve the sequential information, we use the LSTM and GRU 
methods to recognize the user impression. As described in Sec-
tion 4.1, diferent unimodal features (audio �� : 88-dim., linguistic 
�� : 785-dim., body �� 20-dim. and video �� : 58-dim.) were extracted 
from the t-th exchange. We use the early fusion method to con-
catenate diferent unimodal features, generating the exchange-level 
multimodal feature �� = [�� , �� , �� , �� ]. The multimodal feature 
X = (�1, �2, ..., �� ) was used as the input of these neural network 
models. In all models with one recurrent layer and 128 units, we 
obtained a 128-dimensional hidden state from the recurrent layer. 
The recurrent layer was followed by a fully connected layer, which 
projected the output (128-dimensional). At the end of the model 
output layer, which contained two units, the log- softmax function 
was used to output the probabilities of diferent user impressions. 
As shown in Fig. 4 (a), the output at the fnal moment ℎ� can be 
regarded as a representation of the whole sequence, which uses 
a fully connected layer followed by a softmax nonlinear layer to 
predict the probability distribution over diferent classes. 

4.2.2 Multitask deep learning neural network (proposed model). 
MTL is a machine learning approach that simultaneously solves 
multiple learning tasks by exploiting commonalities and diferences 
across tasks [1]. An advantage of the multitask model is that it 
utilizes correlations among dialog-level and exchange-level tasks, 
improving the classifcation performance by learning several tasks 
in parallel. The key factor of MTL is the sharing scheme in the latent 
feature space. In a neural network-based model, the latent features 
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can be regarded as the states of the hidden neurons. In general, MTL 
models are composed of two parts: shared layers and task-specifc 
layers. The lower layers are shared across all tasks, and there are 
several task-specifc layers. In the multitask model, we use a single 
recurrent layer with 128 units as the shared layers. These layers 
extract features at both the exchange level and dialog level for the 
tasks shown in Fig. 4 (b). In the task-specifc layers, for the exchange 
sentiment task, we obtained 128-dimensional hidden states H = (ℎ1, 
ℎ2, ..., ℎ� ) from the recurrent layer, which was followed by a fully 
connected layer that projected the output (128- dimensional). The 
output layer contains two units, and the log-softmax function of 
each hidden unit outputs the exchange-level task-specifc layer at 
time step t, which are the probabilities for diferent exchange self-
sentiments �� . For the dialog-level user impression recognition task, 
the structure is the same as in the single task, and the mathematical 
formula of the model can be described as follows: 

�ℎ��� ����� : ℎ� = ��� � (���� , ℎ� −1) (1) 

���ℎ���� ����� ���� ������� ����� : �� = �� � ���� (ℎ��� + �� )
(2) 

�������� ����� ���� ������� ����� : � = �� � ���� (ℎ��� + �� )
(3) 

Equation 4 shows the multitask loss function of the multitask 
model. �� and �� are the mean square error losses computed for 
the exchange-level and dialog-level label ratings, respectively. The 
values � and (1-�) are interpreted as the loss weights of the dialog-
level task and exchange-level task, which were set manually. 

� = � ∗ �� + (1 − �) ∗ �� (4) 

5 EXPERIMENT 
The dialog-level user impression recognition task and exchange-
level sentiment recognition task are both time-series tasks. Thus, 
considering the time-series information is benefcial for improving 
model performance. Recurrent neural networks are mainly used for 
tasks that involve sequential inputs, such as time-series predictions. 
This work uses LSTM and GRUs as baselines to model the sequence 
of multimodal behaviors. To eliminate the infuence of unbalanced 
data, we adopt 5-fold cross-validation to train the models, yield-
ing 5 groups of evaluation results. The mean of the 5 groups was 
computed and used as the fnal result, and the F1-score of the label 
weights was used as the evaluation metric. According to previous 
works, linguistic features are key descriptors in recognizing user 
satisfaction. In this work, we used a unimodal model with a lin-
guistic feature set as the baseline model. We compare the accuracy 
with the following 5 feature sets to analyze the contribution of each 
modality to the recognition of the dialog-level label: 

(1) L: model trained with linguistic features (baseline) 
(2) L+A: model trained with linguistic features + acoustic features 
(3) L+B: model trained with linguistic features + body features 
(4) L+V: model trained with linguistic features + visual features 
(5) ALL: model trained with acoustic features + body features + 

visual features + linguistic features 

5.1 Experimental settings 
The experiment was performed for the diferent modalities based on 
the (1) dialog-level labels and (2) exchange-level user self-sentiment 

Table 2: Binary classifcation F1-score of diferent multi-
modal combinations of LSTM base models on a dialogue-
level (worthwhile) label (Acoustic (A), Body (B), Visual (V), 
and Linguistic (L)). 

GRU (1-128) LSTM(1-128) LSTM(2-128) LSTM(1-64) 
L 0.677 0.691 0.66 0.618 

L+A 0.601 0.67 0.664 0.56 
L+B 0.597 0.605 0.664 0.563 
L+V 0.683 0.738 0.7 0.694 
ALL 0.692 0.728 0.618 0.697 

labels. The binary classifcation datasets were developed as follows. 
The dialog-level label annotated scores (1-8) were converted to 
binary values (high and low) with a threshold of 4 (neutral state). 
The self-sentiment, which is rated between 1 and 7, was converted 
to binary values (high/low) with a threshold of 4. The number of 
high/low point for self-sentiment label on exchange level were 
2882/2311. 

5.1.1 Comparative experiment setings (single task on the dialog 
level): To investigate suitable hyperparameters, we frst design com-
parative experiments to recognize dialog-level annotations. 
GRU (1-128): A GRU layer with 128 hidden units is applied. 
LSTM (1-128): An LSTM layer with 128 hidden units is applied. 
LSTM (1-64)) An LSTM layer with 64 hidden units is applied. 
LSTM (2-128): Two LSTM layers with 128 hidden units are applied. 

For all the experiments, the number of epochs was 60, and we 
used the Adam optimizer with a learning rate of 0.001. Table 1 shows 
that the worthwhile label has the highest correlation coefcient 
(0.531) with self-sentiment. Therefore, we choose the worthwhile 
label as the target label. The numbers of high/low data points for 
the worthwhile labels at the dialog level were 38/22. The results of 
the comparisons are described in Section 6.1. 

5.1.2 Multitask experiment setings. A 1-layer recurrent layer with 
128 units was applied. The number of epochs was set to 60. In 
our experiments, we used the adaptive moment estimation (Adam) 
optimizer with a learning rate of 0.001. The information associated 
with various modes plays diferent roles in recognizing dialog-level 
labels and exchange-level sentiment. To determine the appropriate 
relationship between the two tasks in the multitask model, we used 
diferent values of � {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. 

6 RESULTS 

6.1 Comparison of diferent methods 
Table 2 shows the results of 4 comparative experiments with the 
multimodal features. To obtain a stable model, we frst use the 
GRU model and LSTM model with the same parameters (1 layer 
with 128 units) to recognize the worthwhile label. Columns 2 and 
3 show the results of the GRU (1-128) and LSTM (1-128) models, 
respectively. The L+V feature set achieved the best result (0.738) 
with the LSTM(1-128) model, which is better than the best result 
(0.683) achieved by the GRU (1-128) model with the ALL feature set. 
For this reason, we use the LSTM model as the base model. Then, 
to obtain appropriate parameters, diferent parameter settings were 
applied in the LSTM model, and columns 3 to 5 present the LSTM 
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Table 3: Binary classifcation F1-score of diferent multimodal combinations of the LSTM (1-128) base model on a dialogue-level 
(worthwhile) label (Acoustic (A), Body (B),Visual (V), Linguistic (L)). 

Multitask Single task 
Loss weight (�) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

L 0.648 0.603 0.668 0.702 0.615 0.677 0.722 0.668 0.629 0.691 
L+A 0.697 0.753 0.762 0.639 0.677 0.707 0.715 0.663 0.753 0.67 
L+B 0.639 0.715 0.692 0.625 0.657 0.563 0.59 0.643 0.601 0.605 
L+V 0.615 0.7 0.715 0.643 0.677 0.728 0.817 0.713 0.707 0.738 
ALL 0.702 0.744 0.677 0.775 0.722 0.629 0.775 0.722 0.692 0.728 

(1-128), LSTM (2-128), and LSTM (1-64) model results. The best 
results of the LSTM (1-128), LSTM (2-128), and LSTM (1-64) models 
were 0.738, 0.7, and 0.697, respectively. For the LSTM (1-128) model, 
the best result (0.738) was obtained with the L+V feature set. Thus, 
the LSTM (1-128) model was used as the baseline. Moreover, we 
found that in most cases, the ALL and L+V feature sets performed 
better than the unimodal feature set (L), while the L+A and L+B 
feature sets performed worse than the unimodal feature set (L) in 
all cases. 

6.2 Comparison of the single task and multitask 
models 

Section 6.1 shows that the LSTM (1-128) model achieves the best F1-
score with the L+V feature set. According to this result, we applied 
the same setting, namely, an LSTM layer with 128 hidden units, in 
the multitask model, and the structure is described in Section 4.2.2. 
Columns 1 to 10 in Table 3 show the binary classifcation results of 
the multitask model with diferent modality features and loss weight 
values (�). Column 11 in Table 3 presents the binary classifcation 
results of a single task with diferent modality features. For the 
single-task model, the results with the ALL and L+V feature sets 
were better than those achieved with the unimodal feature set (L), 
and the L+V feature set produced the best result (0.738). For the 
multitask LSTM model, the L+V feature set achieved the best F1-
score (0.817) by using MTL with loss weight loss (� = 0.7). The best 
results of all feature sets (L, L+A, L+B, L+V, ALL) with the multitask 
model performed better than those with the single-task model, 
with results of 0.702, 0762, 0.715, 0.817, and 0.775, respectively, 
which represent improvements of 0.011, 0.092, 0.113, 0.079, and 
0.047, respectively. The recognition performance resulted in a large 
improvement, demonstrating that our multitask model can learn the 
relation between exchange-level sentiment and a dialog level label 
(worthwhile) and is thus useful and efective for recognizing dialog-
level labels. Meanwhile, for most experiments, the L+B feature set 
performed worse than the unimodal featur e(L) , and we suspect 
that the body feature does not work well to predict the worthwhile 
label. This also explains that why the L+V feature set obtains the 
best result in Table 2 and 3. On the other hand, in some cases (� 
= 0.1), the multitask model performed worse than the single-task 
model, which indicates that a suitable weight loss is important. 

6.3 Results of 18 types of annotations 
Table 4 shows the best binary classifcation result of 18 types of an-
notations at the dialog level with the LSTM (1-128) model. Columns 

Table 4: Binary classifcation F1-scores of 18 annotations 
at the dialogue level. (a) shows positive dialog-level anno-
tations; (b) shows negative dialog-level annotations. “dif” 
denotes the diference in F1-scores between the single task 
and multitask models. 

(a) 
High/Low Best MTL Best Single Dif 

Well-coordinated 38/22 0.78 0.668 +0.112 
Cooperative 46/14 0.737 0.683 +0.054 
Harmonious 34/26 0.782 0.653 +0.129 
Engrossing 27/33 0.798 0.71 +0.087 
Involving 34/26 0.729 0.653 +0.076 
Friendly 11/49 0.781 0.733 +0.048 
Active 39/21 0.715 0.707 +0.008 
Positive 46/14 0.798 0.76 +0.038 
Worthwhile 38/22 0.817 0.738 +0.079 
Average / 0.767 0.701 +0.066 
(b) 

High/Low Best MTL Best Single Dif 
Boring 16/44 0.778 0.767 +0.011 
Unsatisfying 14/46 0.758 0.683 +0.075 
Uncomfortably paced 35/25 0.826 0.679 +0.147 
Cold 15/45 0.74 0.583 +0.157 
Awkward 32/28 0.833 0.683 +0.150 
Unfocused 18/42 0.795 0.644 +0.151 
Intense 23/37 0.762 0.722 +0.040 
Dull 15/45 0.744 0.705 +0.039 
Slow 33/27 0.783 0.7 +0.083 
Average / 0.780 0.685 +0.095 

3 and 4 present the best F1-score for a single task and a multitask 
with 5 types of comparative multimodal feature combinations, re-
spectively. We observed that the multitask model performed better 
than the single-task model in all annotations. Compared with the 
average positive dialog annotation, the average negative dialog 
annotation was worse on the single-task model, with results of 
0.701 and 0.685, respectively. After MTL was applied, the average 
negative dialog-level annotation (0.780) performed better than the 
average positive dialog-level annotation (0.767). Among all annota-
tions, the cold label obtained the minimum F1-score (0.583) at the 
exchange level, and this label achieved the highest improvement 
(0.157) by applying MTL. The awkward label obtained the best 
F1-score (0.833) with the multitask model. 
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Table 5: Binary classifcation F1-scores of the awkward and well-coordinated labels. 

Label Model L A+L B+L F+L ALL Human model(Wizard) 

Well_coordinated 
MTL 0.738 0.791 0.733 0.733 0.791 

0.72Single 0.697 0.722 0.597 0.753 0.764 
Multi-other [23] 0.7 0.74 0.65 (B+V+L) 0.76 

Awkward 
MTL 0.733 0.744 0.744 0.766 0.783 

0.58Single 0.649 0.649 0.648 0.75 0.633 
Multi-other [23] 0.66 0.58 0.68 (B+V+L) 0.63 

Figure 5: Analysis of the efect of correlations. (Dif denotes 
the diference in F1-scores between the single task and multi-
task models, while Correlation shows the Pearson correlation 
coefcient between self-sentiment and dialog-level annota-
tions.) 

7 DISCUSSION 

7.1 Comparisons with previous works 
To the best of our knowledge, [23] used the same dataset as this 
work, which used LSTM (2-128) to recognize the awkward and well-
coordinated labels. To compare our results with the multi-other 
model, we used the LSTM (2-128) model and applied MTL to recog-
nize the awkward and well-coordinated labels. Table 5 shows the 
binary classifcation results of the awkward and well-coordinated 
labels. For the well-coordinated label, the single task achieves a 
similar result to that presented in [23]. All models achieved the 
best F1-score with the ALL feature set, and the multitask model 
produced the best result (0.783). For the awkward label, when com-
paring the single-task model with the multi-other model presented 
in [23], the results with most feature sets are similar, except for the 
A+L feature set. The multitask model achieved a better F1-score 
than all other feature sets (A, L+V) for the awkward label. Overall, 
the multitask model proposed in this work achieved a better perfor-
mance on all feature sets than the results presented in [23], which 
demonstrates that our proposed method better utilizes exchange 
information and improves model performance. Column 8 shows the 
results of the human model proposed in [23]. The user satisfaction 
label score was annotated by Wizard, and the users were divided 
into high and low categories before the F1-score with the original 
annotation was calculated. Compared with the human model, the 

MTL models achieved better F1-scores on both the well-coordinated 
and awkward labels. 

7.2 Analysis of the efect of correlations 
By combining the correlation coefcients in Table 1 and the im-
provement results in Table 4, we found that the correlation coef-
cients and improved performance are not signifcantly related for 
some labels. For positive labels, the friendly label has a correlation 
coefcient of 0.253, while the multitask and single-task models pro-
duce almost the same result. For negative labels, the boring label 
has a coefcient -0.448 , only achieve a slight improvement(0.011) 
by using MTL. Meanwhile, we found that the absolute value of the 
average correlation coefcient of the negative labels (0.352) was 
higher than the average correlation coefcient of the positive labels 
(0.299), and the average improvement in the negative labels (0.095) 
by using MTL was higher than the average improvement in the 
positive labels (0.066), which indicates that although the perfor-
mance improvement was not related to the correlation coefcient 
for every label, the correlation coefcient has a positive relationship 
with the overall improvement by comparing the positive labels and 
negative labels performances. Furthermore, we drew the scatter 
plot of the correlation coefcient between 18 types of labels and 
exchange-level sentiments, as well as the diferent improvements 
in the F1-score by using multiple tasks as shown in Fig.5. We ob-
served that the correlation coefcient is positively correlated with 
the performance improvement for overall user impression. 

8 CONCLUSION 
In this paper, we frst investigate the relationship between the ex-
change level and 18 dialog-level annotations. The worthwhile label 
has the highest correlation with user self-sentiment. To capture 
these correlations, we propose a multitask model to learn the rel-
evant information. By comparing our proposed multitask model 
with a single-task model and other relevant research, we show that 
the multitask model achieved the best performance, with a 15.7% 
performance improvement over the signal-task model with cold 
labels. Thus, our results demonstrate that our model can utilize this 
relation to achieve better performance. However, there is still room 
for improvement. [19] indicates that sex information is benefcial 
for recognizing emotions. This study used only user modal informa-
tion to recognize the users’ impression of the dialog system, while 
other user characteristics, such as age and sex, were not considered. 
In future work, we will utilize the efects of user characteristics on 
user impressions to evaluate dialog systems. 
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